粉碎区域由平面转为立体新型超微粉气流粉碎机提高粉碎效率
多项研究证实,在药品生产过程中固形物料经过超微粉碎,使其处于微米甚至纳米的尺寸时,该物质的物理、化学特性都将发生极大的变化,从而显著提高药品的溶出度,并能减轻药物的毒副作用。无论内服或外用,都能明显提高疗效。超微粉碎技术是近十年来新兴的一门技术,它在传统粉碎技术的基础上,将粉碎的概念向前大大延伸了。在各种超微粉碎机械设备中,目前以气流粉碎机在制药工业上的应用较为广泛,而在气流粉碎机中又以流化床式超微粉气流粉碎机应用最广。
一、传统设备存在三种缺陷
大型流化床式超微粉气流粉碎机主机系统由空压机、空气净化器系统、超音速气流粉碎机、分级机、旋风分离器等组成。中、小型流化床式超微粉气流粉碎机,通常将超音速气流粉碎机、分级机及旋风分离器组合成一体机,可大大节省占地面积,有利于安装、运输和使用。
目前制药行业在生产中所使用的流化床式超微粉气流粉碎机,虽然含盖了多喷管、流化床、卧式分级及气体密封等技术,实现了流场多元化、料层流态化及卧式分级化的体系。但是,由于这种粉碎模式所设计的喷嘴沿粉碎室内壁呈平行、对称排列,只在单一平面内形成对射(即水平对喷),从而使得待粉碎的物料,只能在一个近似平面的范围内进行粉碎,这就导致了以下几种缺陷:
(一)粉碎室的底部为卸料方便,都设计成了圆锥形,由进料装置送入粉碎室内的物料,一旦落入设在粉碎室下方的圆锥体内,物料即进入了一个盲区,无法继续进行粉碎。
(二)粉碎区域仅限于一个近似平面的范围内,面积狭窄,使得物料受到气流夹带、冲击、挤压和摩擦的机会相对较少。
(三)传统结构使得物料在被粉碎过程中,其流态化状态仅限于喷嘴的上方,而沉积于粉碎室下方锥体内的物料不能形成流态化状态。
以上缺陷是造成传统流化床式超微粉气流粉碎机能耗较高、效率偏低的主要原因。
二、新型超微粉气流粉碎机的操控要求
1.严格控制进料量。物料浓度低,物料间接触的几率小,物料浓度高,将影响气流速度,因此在操作时应视气压、物料性质以及机体自身的特性,严格控制好物料进料速度;进料方式要视物料自身的特性来决定,可采用螺旋上料器、振荡下料器或星形下料器,以保证粉碎室内能源源不断得到物料的供给,满足粉碎室内的物料浓度。
2.优化分级结构。分级是超微粉碎系统至关重要的环节,流化床超微粉气流粉碎机一个最显著的特点,即能实现连续的进料和出料,防止物料过细粉碎,造成不必要的能源消耗。操作时应根据涡轮式分级原理,适当加大分级轮直径、提高转速、降低空气流量,以确保分级机的分离粒径细小。
3.进入超微粉气流粉碎机的原始物料要尽可能细小。为达到此目的,应在进行超微粉碎前,采用普通机械式粉碎机进行预粉碎处理,这是节约能源和提高单位产量的最直接有效的方法。
4.确保设备整个封闭系统的气密性要求,包括管道、阀门、设备的封套装置等均不应有泄漏存在。从而将宝贵的空气动力能源,集中用在喷嘴上,确保合理的气体流速和压力,提高粒子的冲击概率。
5.产品收集和除尘器要保证通气顺畅,不应阻力过大。这部分系统装置既要保证收集到合格的产品,又要保证环境的要求,但装备过于庞杂,事必给整体工作带来太多的负担。